Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.890
Filtrar
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Nature ; 628(8008): 506-507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600187
3.
Cells ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607006

RESUMO

Primary ciliary dyskinesia (PCD) is an inherited disorder that impairs motile cilia, essential for respiratory health, with a reported prevalence of 1 in 16,309 within Hispanic populations. Despite 70% of Puerto Rican patients having the RSPH4A [c.921+3_921+6del (intronic)] founder mutation, the characterization of the ciliary dysfunction remains unidentified due to the unavailability of advanced diagnostic modalities like High-Speed Video Microscopy Analysis (HSVA). Our study implemented HSVA for the first time on the island as a tool to better diagnose and characterize the RSPH4A [c.921+3_921+6del (intronic)] founder mutation in Puerto Rican patients. By applying HSVA, we analyzed the ciliary beat frequency (CBF) and pattern (CBP) in native Puerto Rican patients with PCD. Our results showed decreased CBF and a rotational CBP linked to the RSPH4A founder mutation in Puerto Ricans, presenting a novel diagnostic marker that could be implemented as an axillary test into the PCD diagnosis algorithm in Puerto Rico. The integration of HSVA technology in Puerto Rico substantially enhances the PCD evaluation and diagnosis framework, facilitating prompt detection and early intervention for improved disease management. This initiative, demonstrating the potential of HSVA as an adjunctive test within the PCD diagnostic algorithm, could serve as a blueprint for analogous developments throughout Latin America.


Assuntos
Síndrome de Kartagener , Humanos , Algoritmos , Cílios/patologia , Hispânico ou Latino , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Microscopia de Vídeo
4.
Int J Pharm ; 656: 124097, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609058

RESUMO

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.

5.
J Comp Neurol ; 532(4): e25614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616537

RESUMO

Comprehensive understanding of interconnected networks within the brain requires access to high resolution information within large field of views and over time. Currently, methods that enable mapping structural changes of the entire brain in vivo are extremely limited. Third harmonic generation (THG) can resolve myelinated structures, blood vessels, and cell bodies throughout the brain without the need for any exogenous labeling. Together with deep penetration of long wavelengths, this enables in vivo brain-mapping of large fractions of the brain in small animals and over time. Here, we demonstrate that THG microscopy allows non-invasive label-free mapping of the entire brain of an adult vertebrate, Danionella dracula, which is a miniature species of cyprinid fish. We show this capability in multiple brain regions and in particular the identification of major commissural fiber bundles in the midbrain and the hindbrain. These features provide readily discernable landmarks for navigation and identification of regional-specific neuronal groups and even single neurons during in vivo experiments. We further show how this label-free technique can easily be coupled with fluorescence microscopy and used as a comparative tool for studies of other species with similar body features to Danionella, such as zebrafish (Danio rerio) and tetras (Trochilocharax ornatus). This new evidence, building on previous studies, demonstrates how small size and relative transparency, combined with the unique capabilities of THG microscopy, can enable label-free access to the entire adult vertebrate brain.


Assuntos
Microscopia de Geração do Segundo Harmônico , Animais , Peixe-Zebra , Encéfalo , Mapeamento Encefálico , Mesencéfalo
6.
World J Gastroenterol ; 30(11): 1524-1532, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617452

RESUMO

Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes. Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation. A large number of studies have shown that autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal (GI) cells. However, the role of autophagy in GI diseases remains controversial. This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases, in order to provide new ideas for their diagnosis and treatment.


Assuntos
Gastroenteropatias , Humanos , Autofagia , Microscopia Eletrônica de Transmissão
7.
Biol Imaging ; 4: e5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617997

RESUMO

In this article, we propose an algorithm for aligning three-dimensional objects when represented as density maps, motivated by applications in cryogenic electron microscopy. The algorithm is based on minimizing the 1-Wasserstein distance between the density maps after a rigid transformation. The induced loss function enjoys a more benign landscape than its Euclidean counterpart and Bayesian optimization is employed for computation. Numerical experiments show improved accuracy and efficiency over existing algorithms on the alignment of real protein molecules. In the context of aligning heterogeneous pairs, we illustrate a potential need for new distance functions.

8.
Photonix ; 5(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618142

RESUMO

Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.

9.
Bio Protoc ; 14(7): e4968, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618180

RESUMO

Citrus fruits encompass a diverse family, including oranges, mandarins, grapefruits, limes, kumquats, lemons, and others. In citrus, Agrobacterium tumefaciens-mediated genetic transformation of Hongkong kumquat (Fortunella hindsii Swingle) has been widely employed for gene function analysis. However, the perennial nature of woody plants results in the generation of transgenic fruits taking several years. Here, we show the procedures of Agrobacterium-mediated transient transformation and live-cell imaging in kumquat (F. crassifolia Swingle) fruit, using the actin filament marker GFP-Lifeact as an example. Fluorescence detection, western blot analysis, and live-cell imaging with confocal microscopy demonstrate the high transformation efficiency and an extended expression window of this system. Overall, Agrobacterium-mediated transient transformation of kumquat fruits provides a rapid and effective method for studying gene function in fruit, enabling the effective observation of diverse cellular processes in fruit biology.

10.
J Plant Physiol ; 297: 154236, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38621330

RESUMO

Germline cells are critical for transmitting genetic information to subsequent generations in biological organisms. While their differentiation from somatic cells during embryonic development is well-documented in most animals, the regulatory mechanisms initiating plant germline cells are not well understood. To thoroughly investigate the complex morphological transformations of their ultrastructure over developmental time, nanoscale 3D reconstruction of entire plant tissues is necessary, achievable exclusively through electron microscopy imaging. This paper presents a full-process framework designed for reconstructing large-volume plant tissue from serial electron microscopy images. The framework ensures end-to-end direct output of reconstruction results, including topological networks and morphological analysis. The proposed 3D cell alignment, denoise, and instance segmentation pipeline (3DCADS) leverages deep learning to provide a cell instance segmentation workflow for electron microscopy image series, ensuring accurate and robust 3D cell reconstructions with high computational efficiency. The pipeline involves five stages: the registration of electron microscopy serial images; image enhancement and denoising; semantic segmentation using a Transformer-based neural network; instance segmentation through a supervoxel-based clustering algorithm; and an automated analysis and statistical assessment of the reconstruction results, with the mapping of topological connections. The 3DCADS model's precision was validated on a plant tissue ground-truth dataset, outperforming traditional baseline models and deep learning baselines in overall accuracy. The framework was applied to the reconstruction of early meiosis stages in the anthers of Arabidopsis thaliana, resulting in a topological connectivity network and analysis of morphological parameters and characteristics of cell distribution. The experiment underscores the 3DCADS model's potential for biological tissue identification and its significance in quantitative analysis of plant cell development, crucial for examining samples across different genetic phenotypes and mutations in plant development. Additionally, the paper discusses the regulatory mechanisms of Arabidopsis thaliana's germline cells and the development of stamen cells before meiosis, offering new insights into the transition from somatic to germline cell fate in plants.

11.
Angew Chem Int Ed Engl ; : e202405246, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622700

RESUMO

Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy by exceeding the diffraction limit and revealing previously unattainable nanoscale details of cellular structures and molecular dynamics. This super-resolution imaging capability relies on fluorophore photoswitching, which is crucial for optimizing the imaging conditions and accurately determining the fluorophore positions. To understand the general on and off photoswitching mechanisms of single dye molecules, various photoswitching reagents were evaluated. Systematic measurement of the single-molecule-level fluorescence on and off rates (kon and koff) in the presence of various photoswitching reagents and theoretical calculation of the structure of the photoswitching reagent-fluorophore pair indicated that the switch-off mechanism is mainly determined by the nucleophilicity of the photoswitching reagent, and the switch-on mechanism is a two-photon-induced dissociation process, which is related to the power of the illuminating laser and bond dissociation energy of this pair. This study contributes to a broader understanding of the molecular photoswitching mechanism in SMLM imaging and provides a basis for designing improved photoswitching reagents with potential applications extending to materials science and chemistry.

12.
Ophthalmic Genet ; : 1-6, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622802

RESUMO

PURPOSE: To evaluate the corneal endothelial cell morphology in children with autosomal recessive Alport syndrome (ARAS). METHODS: This is a longitudinal, prospective cohort study that evaluated pediatric patients with genetically diagnosed ARAS. Fifty-eight eyes of 29 pediatric patients (12 patients, 17 controls) underwent a full ophthalmic examination. Corneal endothelial cell density (ECD) (cells/mm²), coefficient variation (CV) of cell area (polymegathism), the percentage of hexagonal cells (HEX) (pleomorphism), and central corneal thickness (CCT) were analyzed automatically using a noncontact specular microscopy. RESULTS: The mean ECD was 2904 ± 355.48 cell/mm² in the ARAS group and 3263.20 ± 261.71 cell/mm² in the control group (p = 0.004). In the ARAS group, the mean CV was 46.53 ± 10.43, which was significantly higher than that in controls (p = 0.026). The mean HEX was 48.86 ± 14.71 in the ARAS group and 59.06 ± 10.64 in the control group (p = 0.038). The mean CCT was 565.26 ± 39.77 µm in the ARAS group and 579.66 ± 31.65 µm in the control group (p = 0.282). The comparison of endothelial cell characteristic of the ARAS group with 1-year follow-up is as follows: The mean ECD decreased from 2904 ± 355.48 cell/mm² to 2735 ± 241.58 cell/mm² (p = 0.003). The mean CV increased from 46.53 ± 10.43 to 47.93 ± 10.50 (p = 0.471). The mean HEX decreased from 48.86 ± 14.71 to 48.50 ± 10.06 (p = 0.916). The mean CCT decreased from 565.26 ± 39.77 µm to 542.86 ± 40.39 µm (p = 0.000). CONCLUSION: Measurement of ECD and percentage of hexagonality can also be used as an indicator of the health of the corneal endothelium. In this study, the mean ECD and HEX were significantly lower in ARAS group than in age-matched pediatric controls. Polymegathism, which reflects cellular stress, was statistically significantly higher in ARAS group. The mean ECD and CCT decreased significantly at 1-year follow-up. This study may demostrated that endothelial damages and stress in ARAS patients appear in childhood and show a rapid increase with age.

13.
Microsc Res Tech ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623764

RESUMO

Green-synthesized metal oxide nanoparticles have garnered considerable attention due to their simple, sustainable, and eco-friendly attributes, coupled with their diverse applications in biomedicine and environmental context. The current study shows a sustainable approach for synthesizing molybdenum oxide nanoparticles (MoONPs) utilizing an extract from Anabaena sp. A-1. This novel approach marks a significant milestone as various spectral approaches were employed for characterization of the green-synthesized MoONPs. Ultraviolet-visible (UV-Vis) spectroscopic analysis revealed a surface plasmon resonance (SPR) peak of MoONPs at 538 nm. Fourier transform infrared (FTIR) spectral analysis facilitated the identification of functional groups responsible for both the stability and production of MoONPs. Scanning electron microscopy (SEM) was utilized revealing a rod shape morphology of the MoONPs. X-ray diffraction (XRD) analysis yielded a calculated crystal size of 31 nm, indicating the crystalline nature of MoONPs. Subsequently, biological assays were employed to ascertain the potential of the bioengineered MoONPs. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to quantify free radical scavenging activity, revealing an antioxidant capacity of 68.1% at 200 µg/mL. To evaluate antibacterial and antifungal efficacy, the disc diffusion method was employed across varying concentrations of MoONPs (6.25, 12.5, 25, 50, 100, 150, 200 µg/mL). Quantification of cytotoxicity was performed via a brine shrimp assay, yielding an IC50 value of 552.3 µg/mL, a metric of moderate cytotoxicity. To assess the biocompatibility of MoONPs, an antihemolytic assay was conducted, confirming their safety profile. Additionally, MoONPs exhibited non-toxic attributes in an insecticidal assay. Notably, in anti-inflammatory assay MoONPs showed an inactive nature towards the reactive oxygen species. In conclusion, these findings highlight the potential versatility of MoONPs in various biological applications, extending beyond their recognized anti-inflammatory and insecticidal properties. RESEARCH HIGHLIGHTS: This study marks an advancement in nanotechnology, exploring ways for MoONPs fabrication, representing a unique and unexplored research domain. Green-synthesized MoONPs using Anabaena sp. A-1 extract offers a sustainable and eco-friendly approach. Characterized by UV-Vis, FTIR, SEM, and XRD, MoONPs demonstrate rod-shaped morphology and crystalline nature. Bioengineered MoONPs exhibit versatility in biological applications, demonstrating notable antioxidant, antibacterial and antifungal efficacy, moderate cytotoxicity, biocompatibility, and insecticidal properties, emphasizing their multifaceted utility. The research findings highlight the potential utilization of MoONPs across a spectrum of biological applications, thereby suggesting their promising role in the realm of biomedicine and environmental context.

14.
J Virol ; : e0041624, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624232

RESUMO

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued, enabling the virus to escape from host immunity by changing its spike antigen, while biased toward the receptor-binding domain and N-terminal domain. Here, we isolated a novel pan-SARS-CoV-2 neutralizing antibody (which we named MO11) for even the recent dominators XBB.1.16 and EG.5.1, from a convalescent patient who had received three doses of an original mRNA COVID-19 vaccination. A cryo-electron microscopy analysis of the spike-MO11 complex at 2.3 Å atomic resolution revealed that it recognizes a conserved epitope hidden behind a glycan shield at N331 on subdomain 1 (SD1), holding both the N- and C-terminal segments comprising SD1. Our identification of MO11 unveiled the functional importance of SD1 for the spike's function, and we discuss the potential availability of a novel common epitope among the SARS-CoV-2 variants.IMPORTANCENovel severe acute respiratory syndrome coronavirus 2 variants with immune evasion ability are still repeatedly emerging, nonetheless, a part of immunity developed in responding to the antigen of earlier variants retains efficacy against recent variants irrespective of the numerous mutations. In exploration for the broadly effective antibodies, we identified a cross-neutralizing antibody, named MO11, from the B cells of the convalescent patient. MO11 targets a novel epitope in subdomain 1 (SD1) and was effective against all emerging variants including XBB.1.16 and EG.5.1. The neutralizing activity covering from D614G to EG.5.1 variants was explained by the conservation of the epitope, and it revealed the importance of the subdomain on regulating the function of the antigen for viral infection. Demonstrated identification of the neutralizing antibody that recognizes a conserved epitope implies basal contribution of such group of antibodies for prophylaxis against COVID-19.

15.
Nano Lett ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625005

RESUMO

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.

16.
ACS Sens ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625680

RESUMO

Relying on the strong optical absorption of hemoglobin to pulsed laser energy, photoacoustic microscopy provides morphological and functional information on microvasculature label-freely. Here, we propose speckle variance photoacoustic microscopy (SV-PAM), which harnesses intrinsic imaging contrast from temporal-varied photoacoustic signals of moving red blood cells in blood vessels, for recovering three-dimension hemodynamic images down to capillary-level resolution within the microcirculatory tissue beds in vivo. Calculating the speckle variance of consecutive photoacoustic B-scan frames acquired at the same lateral position enables accurate identification of blood perfusion and occlusion, which provides interpretations of dynamic blood flow in the microvasculature, in addition to the microvascular anatomic structures. We demonstrate high-resolution hemodynamic imaging of vascular occlusion and reperfusion in the microvasculature of mice ears in vivo. The results suggest that our SV-PAM is potentially invaluable for biomedical hemodynamic investigations, for example, imaging ischemic stroke and hemorrhagic stroke.

17.
Nano Converg ; 11(1): 14, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622355

RESUMO

Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of such heterostructure engineering is the availability of 2D crystals with different degrees of interfacial interactions. In this work, we report a controlled epitaxial growth of monolayer TaSe2 with different structural phases, 1H and 1 T, on a bilayer graphene (BLG) substrate using molecular beam epitaxy, and its impact on the electronic properties of the heterostructures using angle-resolved photoemission spectroscopy. 1H-TaSe2 exhibits significant charge transfer and band hybridization at the interface, whereas 1 T-TaSe2 shows weak interactions with the substrate. The distinct interfacial interactions are attributed to the dual effects from the differences of the work functions as well as the relative interlayer distance between TaSe2 films and BLG substrate. The method demonstrated here provides a viable route towards interface engineering in a variety of transition-metal dichalcogenides that can be applied to future nano-devices with designed electronic properties.

18.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625940

RESUMO

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Ligação Proteica , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
19.
J Biomed Opt ; 29(4): 046501, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629030

RESUMO

Significance: Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful and versatile imaging technique renowned for its remarkable features, including high-speed 3D tomography, minimal photobleaching, and low phototoxicity. The interference light-sheet fluorescence microscope, with its larger field of view (FOV) and more uniform axial resolution, possesses significant potential for a wide range of applications in biology and medicine. Aim: The aim of this study is to investigate the interference behavior among multiple light sheets (LSs) in LSFM and optimize the FOV and resolution of the light-sheet fluorescence microscope. Approach: We conducted a detailed investigation of the interference effects among LSs through theoretical derivation and numerical simulations, aiming to find optimal parameters. Subsequently, we constructed a customized system of multi-LSFM that incorporates both interference light sheets (ILS) and noninterference light-sheet configurations. We performed beam imaging and microsphere imaging tests to evaluate the FOV and axial resolution of these systems. Results: Using our custom-designed light-sheet fluorescence microscope, we captured the intensity distribution profiles of both interference and noninterference light sheets (NILS). Additionally, we conducted imaging tests on microspheres to assess their imaging outcomes. The ILS not only exhibits a larger FOV compared to the NILS but also demonstrates a more uniform axial resolution. Conclusions: By effectively modulating the interference among multiple LSs, it is possible to optimize the intensity distribution of the LSs, expand the FOV, and achieve a more uniform axial resolution.


Assuntos
Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Microesferas , Fotodegradação
20.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629499

RESUMO

Expansion microscopy (ExM) is a revolutionary novel approach to increase resolution in light microscopy. In contrast to super-resolution microscopy methods that rely on sophisticated technological advances, including novel instrumentation, ExM instead is entirely based on sample preparation. In ExM, labeled target molecules in fixed cells are anchored in a hydrogel, which is then physically enlarged by osmotic swelling. The isotropic swelling of the hydrogel pulls the labels apart from one another, and their relative organization can thus be resolved using conventional microscopes even if it was below the diffraction limit of light beforehand. As ExM can additionally benefit from the technical resolution enhancements achieved by super-resolution microscopy, it can reach into the nanometer range of resolution with an astoundingly low degree of error induced by distortion during the physical expansion process. Because the underlying chemistry is well understood and the technique is based on a relatively simple procedure, ExM is easily reproducible in non-expert laboratories and has quickly been adopted to address an ever-expanding spectrum of problems across the life sciences. In this Review, we provide an overview of this rapidly expanding new field, summarize the most important insights gained so far and attempt to offer an outlook on future developments.


Assuntos
Hidrogéis , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...